(x+2)(6x^3-29x^2)(37x-12)=0

Simple and best practice solution for (x+2)(6x^3-29x^2)(37x-12)=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (x+2)(6x^3-29x^2)(37x-12)=0 equation:


Simplifying
(x + 2)(6x3 + -29x2)(37x + -12) = 0

Reorder the terms:
(2 + x)(6x3 + -29x2)(37x + -12) = 0

Reorder the terms:
(2 + x)(-29x2 + 6x3)(37x + -12) = 0

Reorder the terms:
(2 + x)(-29x2 + 6x3)(-12 + 37x) = 0

Multiply (2 + x) * (-29x2 + 6x3)
(2(-29x2 + 6x3) + x(-29x2 + 6x3))(-12 + 37x) = 0
((-29x2 * 2 + 6x3 * 2) + x(-29x2 + 6x3))(-12 + 37x) = 0
((-58x2 + 12x3) + x(-29x2 + 6x3))(-12 + 37x) = 0
(-58x2 + 12x3 + (-29x2 * x + 6x3 * x))(-12 + 37x) = 0
(-58x2 + 12x3 + (-29x3 + 6x4))(-12 + 37x) = 0

Combine like terms: 12x3 + -29x3 = -17x3
(-58x2 + -17x3 + 6x4)(-12 + 37x) = 0

Multiply (-58x2 + -17x3 + 6x4) * (-12 + 37x)
(-58x2 * (-12 + 37x) + -17x3 * (-12 + 37x) + 6x4 * (-12 + 37x)) = 0
((-12 * -58x2 + 37x * -58x2) + -17x3 * (-12 + 37x) + 6x4 * (-12 + 37x)) = 0
((696x2 + -2146x3) + -17x3 * (-12 + 37x) + 6x4 * (-12 + 37x)) = 0
(696x2 + -2146x3 + (-12 * -17x3 + 37x * -17x3) + 6x4 * (-12 + 37x)) = 0
(696x2 + -2146x3 + (204x3 + -629x4) + 6x4 * (-12 + 37x)) = 0
(696x2 + -2146x3 + 204x3 + -629x4 + (-12 * 6x4 + 37x * 6x4)) = 0
(696x2 + -2146x3 + 204x3 + -629x4 + (-72x4 + 222x5)) = 0

Combine like terms: -2146x3 + 204x3 = -1942x3
(696x2 + -1942x3 + -629x4 + -72x4 + 222x5) = 0

Combine like terms: -629x4 + -72x4 = -701x4
(696x2 + -1942x3 + -701x4 + 222x5) = 0

Solving
696x2 + -1942x3 + -701x4 + 222x5 = 0

Solving for variable 'x'.

Factor out the Greatest Common Factor (GCF), 'x2'.
x2(696 + -1942x + -701x2 + 222x3) = 0

Subproblem 1

Set the factor 'x2' equal to zero and attempt to solve: Simplifying x2 = 0 Solving x2 = 0 Move all terms containing x to the left, all other terms to the right. Simplifying x2 = 0 Take the square root of each side: x = {0}

Subproblem 2

Set the factor '(696 + -1942x + -701x2 + 222x3)' equal to zero and attempt to solve: Simplifying 696 + -1942x + -701x2 + 222x3 = 0 Solving 696 + -1942x + -701x2 + 222x3 = 0 The solution to this equation could not be determined. This subproblem is being ignored because a solution could not be determined.

Solution

x = {0}

See similar equations:

| 8+17x=18x+2 | | (6x^3-29x^2)(37x-12)=0 | | 21(21+-1X+-1Y)+5Y=171 | | 6x-11=-3x+4 | | 2x^2+y^2=36 | | 103x-6=17-2x | | Y-2=1(x-6) | | 2ln(X-4)=-4 | | 2y-3(2y-3)+2=3 | | 13s-10=120 | | 55000x+2000=62000x+2000 | | 2(x+3)-5(x-1)= | | 100=y-34 | | 2A(A-6)=0 | | 6(x+4)+5x=5(x+5)-7 | | 0.9p=5.4 | | 21=9a | | 2(X+3)-5(X+1)=0 | | b^2=21-10b | | x^2-12x-169=0 | | (X-0.5)*(X+2)=0 | | 2p=3p-5 | | 21+-1X+-1Y+5Y+20(1X+9)=351 | | (-2x^3+5x^2-x+7)+(4x^3-3x+2)= | | (8X-4)-(X+3)=0 | | 4a=-7a | | 5c+12=8c+10.23 | | -2x+4=x-6 | | 1(x+6)+4=7(x-2) | | (9A+7)+(5A-6)=0 | | 17x+3y=13 | | 10m^2+3m-21=0 |

Equations solver categories